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Abstract
With a view to obtaining further insight into the nature of eigenvalues and
eigenfunctions of a stationary state one-dimensional Schrödinger equation
corresponding to a non-Hermitian Hamiltonian H(x, p) we investigate the
ground-state solutions for a variety of potentials within the framework of an
extended complex phase space characterized by x = x1 + ip2, p = p1 + ix2,
where (x1, p1) and (x2, p2) are real and considered as canonical pairs. The
analyticity property of the eigenfunction alone is found sufficient to throw light
on the nature of eigenvalues and eigenfunctions for different systems. It is
noted that the imaginary part of the eigenvalue, Ei, turns out to be zero for
all potentials V (x) with real couplings whereas it turns out to be nonzero for
the case when the couplings are complex. The prescription is also extended
to study the excited states. The problems related to the normalization of the
eigenfunction and the boundary conditions to be used within this framework
are also discussed.

PACS number: 03.65.Ge

1. Introduction

In spite of the use of a complex potential in the optical model of the atomic nucleus about 60
years ago [1], the studies of the complex Hamiltonian systems in mathematical terms have not
been pursued in the literature to the desired extent. It is only in recent years that such studies
have become of considerable interest [2–17, 27, 28] mainly for obtaining a better theoretical
understanding of several newly discovered phenomena [18, 19] in different contexts. Further,
besides some general studies of complex Hamiltonians in the nonlinear domain [2, 3], efforts
have been made to study both classical [4, 5] and quantum [6–17, 27, 28] aspects of the
one-dimensional complex Hamiltonian system H(x, p).

With regard to the complexity of H(x, p), it has been introduced and studied in different
ways in the literature (for a detailed survey we refer to our earlier work [5]), namely, by
1 Author to whom correspondence should be addressed.
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considering complex couplings in the potential V (x), by complexifying the real coordinate x
and the real momentum p through real parameters a and b,namely, z= ax + ibp, z∗ = ax− ibp,
thus leading to a particular type of complex phase plane. At times, the parameters a and b have
also been considered as complex. Another approach to the complex phase space, advocated
in recent years [4, 5, 16] and perhaps turning out to be more sound in mathematical terms, can
be expressed by writing x and p in the form

x = x1 + ip2 p = p1 + ix2 (1)

where the imaginary parts x2 and p2 introduced, respectively, in the variables p and x turn out
[4] to be canonical pairs such as x1 and p1. In the classical context note that H(x, p) now
becomes the function of two complex variables and the use of two pairs of Cauchy–Riemann
conditions for the analyticity of H(x, p) = H1(x1, p1, x2, p2) + iH2(x1, p1, x2, p2), has led
[4] to several interesting features regarding the integrability of the associated two-dimensional
real systems H1 and H2. In the quantum context, on the other hand, since p −→ −ih̄ ∂

∂x

which implies p1 −→ − ∂
∂p2
, x2 −→ ∂

∂x1
, the analyticity of H(x, p) gets translated into that

of the complex potential function V (x) and the same is not of immediate concern unless the
underlying formalism deals with the derivatives of V (x).

Before proceeding further some pertinent remarks about the non-Hermitian nature of
H(x, p) are in order. Firstly, the much studied [6–15] PJ -symmetric Hamiltonians now,
in view of the transformation (1), may just correspond to a restriction on the variables
x1, p1, x2, p2, namely, under PJ -symmetry

(x1, p1, x2, p2) −→ (−x1, p1,−x2, p2; i → −i).

At this stage it should be pointed out that the type of PJ -symmetry with which Bender
et al [6–8, 25] (as also other authors [10–15, 24, 26]) are dealing is different from the one
manifesting in the present approach (cf potential (46)). In fact, the two approaches deal with
different types of non-Hermitian Hamiltonians. The non-Hermiticity (or for that matter the
PJ -symmetry) arising in the approach of Bender et al is mainly due to the complexity of the
potential parameters (couplings) whereas in the present case, not only the parameters but also
the underlying phase space is considered (cf equation (1)) as complex. One can say that the
property of PJ -symmetry of a non-Hermitian Hamiltonian investigated in the present work
is of a generalized nature, which, in certain limits (i.e. for the case of real x and p), will reduce
to the conventional PJ -symmetry.

Secondly, a transformation similar to (1), which we have used [4, 5] recently
following the work of Xavier and de Aguiar [16], was discussed [3] sometime ago
by Rao, Buti and Khadkikar (RBK) in the studies of nonlinear evolution equations in
the context of amplitude-modulated nonlinear Langmuir waves in plasma. In fact, the
type of linkage which we have studied recently [4], between a one-dimensional complex
Hamiltonian H(x, p) and the corresponding two, two-dimensional real Hamiltonian systems
H1(x1, p1, x2, p2) andH2(x1, p1, x2, p2), was briefly pointed out by RBK but in a restricted
sense and that too without any reference to the Lie Backlund transformation used in [4].
Further note that for the dimensional considerations there appears a constant d in equation (1)
in the form x = x1 + id p2, p = p1 + id−1x2. In this work, however, we shall choose d = 1
for simplicity.

Thirdly, it is well known [20] that the spectral structure of the Korteweg–de Vries (KdV)
equation,

∂U

∂t
− 6U

∂U

∂x
+
∂3U

∂x3
= 0 (2)
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can be obtained, in general, by the Sturm–Liouville equation or, in particular, by the
Schrödinger eigenvalue problem, namely,[

− ∂2

∂ξ2
+ U(ξ)

]
ψ(ξ) = Eψ(ξ) (3)

where U(ξ), acting as a potential term in (3) with the stationary variable ξ = x − νt , is
a solution of (2). Thus, the complex solutions admitted by the KdV equation (2) can also
provide [3] the examples of solvable cases of the corresponding Schrödinger-like equation (3)
for complex potentials. We shall return to some of these discussions in section 5. In
another case, in the studies of the nonlinear wave–wave interactions Verheest [2] has used the
complexity of the Hamiltonian in a different way, i.e. by introducing the complex variables
aj = √

Jj exp(iφj ), where Jj and φj , respectively, are the actions and the angles satisfying

the Hamilton equations
◦
φj = (∂H/∂Jj),

◦
J j = −(∂H/∂φj) in the same way as the canonical

pairs x and p satisfy. In this case, H turns out to be a function of complex variables aj and a∗
j .

Finally, a mention may be made of the ‘complex scaling’ method used by Moiseyev and
his co-workers [9]. In this approach one writes the complex-scaled Hamiltonian operator Hθ
as

Hθ = S−1(θ)ĤS(θ) (4)

where x is replaced by x ′ = x exp(−iθ) and the scale operator S is defined asS = exp(iθxd/dx)
such that Sf (x) = f (xeiθ ) for any analytic function f (x). For the quantum system (where
p2 −→ −(∂2/∂x2) with h̄ = m = 1), however, one obtains

Hθ = −1

2
e−2iθ ∂

∂x ′2 + V (x eiθ ). (5)

In the present work, using the transformation (1) we exploit the analyticity property of
the eigenfunctionψ(x) to obtain the solution of the analogous Schrödinger equation

Ĥ (x, p)ψ(x) = Eψ(x) (6)

where

H(x, p) = −1

2

∂2

∂x2
+ V (x) (7)

for the complex potential V (x). Note that since equation (6) departs from the conventional
conceptual and mathematical setting of the standard [21] Schrödinger equation, we call
equation (6) the ‘analogous Schrödinger equation’ (ASE) for the non-Hermitian operator
H(x, p). For this purpose, after using (1) and writing

ψ(x) = ψr(x1, p2) + iψi(x1, p2) (8)

we separate [22] equation (6) into a pair of coupled PDEs for ψr and ψi and look for their
quasi-exact solutions for a variety of potentials using what is known [23] as the ‘eigenfunction
ansatz method’.

The arrangement of the paper is as follows: in section 2, we carry out the reduction of
equation (6) into a pair of coupled PDEs in a quite general manner and look for the ground-state
solution of the resultant equations. In section 3, we apply these results to a variety of power,
singular and exponential potentials and study the nature of the complex eigenvalue spectra for
these potentials. The problems pertaining to the study of excited states and the normalization
of the eigenfunctionψ(x) in the extended complex phase space generated by (1) are addressed
in section 4. Finally, the findings are summarized and concluding remarks are made in
section 5.
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2. General results

In order to recast ASE (6) into a pair of coupled PDEs in ψr andψi introduced in equation (8),
we also express the complex quantities V (x) and E in the form

V (x) = Vr(x1, p2) + iVi(x1, p2) E = Er + iEi. (9)

In equations (8) and (9) the subscripts r and i, respectively, stand for the real and imaginary
parts of the corresponding quantity. Additional subscripts to these quantities separated by a
comma will however denote the partial derivatives of the corresponding quantity. Thus, after
using (1), (7), (8) and (9) in ASE (6) and separating the real and imaginary parts in the resultant
expression, one obtains [22] the following pair of coupled PDEs:

− 1
2

(
ψr,x1x1 − ψr,p2p2 + 2ψi,x1p2

)
+ Vrψr − Viψi = Erψr − Eiψi (10a)

− 1
2

(
ψi,x1x1 − ψi,p2p2 + 2ψr,x1p2

)
+ Viψr + Vrψi = Erψi + Eiψr. (10b)

Next we use the analyticity property of ψ(x) in terms of the Cauchy–Riemann conditions,
namely,

ψr,x1 = ψi,p2 ψr,p2 = −ψi,x1 (11)

to express equations (10) in somewhat simpler forms as

−2ψr,x1x1 + Vrψr − Viψi = Erψr − Eiψi (12a)

−2ψi,x1x1 + Viψr + Vrψi = Erψi + Eiψr (12b)

or

Er = Vr − 2

ψ2
i + ψ2

r

[
ψr ψr,x1x1 + ψiψi,x1x1

]
(12a′)

Ei = Vi − 2

ψ2
i + ψ2

r

[
ψr ψi,x1x1 − ψiψr,x1x1

]
. (12b′)

For the (ground-state) solutions of equations (12a) and (12b) we now make an ansatz, namely,

ψ(x) ≡ ψr + iψi = exp(g(x))

= exp[gr(x1, p2) + igi(x1, p2)]
(13)

which implies

ψr(x1, p2) = exp[gr(x1, p2)] cosgi(x1, p2) (14a)

ψi(x1, p2) = exp[gr(x1, p2)] sin gi(x1, p2) (14b)

where gr and gi, in view of conditions (11), satisfy

gr,x1 = gi,p2 gr,p2 = −gi,x1 . (15)

From equations (14a) and (14b) note that

ψ2
r + ψ2

i = e2gr � = ψi

ψr
= tan gi. (16)

Finally, in terms of gr and gi, equations (12a) and (12b) can respectively be expressed as

gr,x1x1 − g2
i,x1

+ g2
r,x1

+ 1
2 (Er − Vr) = 0 (17a)
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gi,x1x1 + 2gi,x1gr,x1 + 1
2 (Ei − Vi) = 0 (17b)

or, alternatively, using (15) one obtains

gi,p2x1 − g2
r,p2

+ g2
i,p2

+ 1
2 (Er − Vr) = 0 (18a)

gr,p2x1 + 2gr,p2 gi,p2 − 1
2 (Ei − Vi) = 0. (18b)

Thus, for a given potential V (x) and an ansatz for ψ(x) equations (17a) and (17b) (or for
that matter equations (18a) and (18b)) can be rationalized to yield the complex eigenvalue E.
In the next sections we demonstrate the applications of these results to polynomial, singular
and exponential potentials. For the vanishing of the imaginary part of the eigenvalue, Ei (as
is the case with PJ -symmetric Hamiltonians [7, 8]), it is not difficult to derive from (17b) a
restriction on the forms of gr and gi, namely,

gi,x1 = −gr,p2 = 1

2
e−2gr

∫
e2gr Vi dx1 + f (p2) (19)

where equations (14)–(16) are used and f (p2) is some arbitrary function of integration which
again can be set equal to zero for simplicity.

3. Applications

3.1. Polynomial potentials

To demonstrate the underlying steps and the intricacies involved in the method, we first take
up the well-known case of a complex oscillator and then consider other more complicated
forms of the complex polynomial potentials, namely, the quartic potentials.

3.1.1. Complex oscillator. In this case the potential

V (x) = ax2 (a real) (20)

using (1), can be expressed as

Vr(x1, p2) = a
(
x2

1 − p2
2

)
Vi(x1, p2) = 2ax1p2

and the ansatz for gr and gi, in conformity with (15), turns out to be

gr(x1, p2) = 1
2 α

(
x2

1 − p2
2

)
+ βx1p2 gi(x1, p2) = 1

2 β
(−x2

1 + p2
2

)
+ αx1p2 (21)

where α and β are real. Now using (21) in (17a) one arrives at the expression

α − (−βx1 + αp2)
2 + (αx1 + βp2)

2 + 1
2Er − 1

2a
(
x2

1 − p2
2

) = 0 (22)

which can be rationalized to yield the following relations:

Er = −2α (23a)

βα = 0 (23b)

−β2 + α2 − 1
2 a = 0. (23c)

Note, from (23b), that for an acceptable solution either α = 0 or β = 0. If α = 0, then
equation (23c) suggests an imaginary value of β which is contrary to ansatz (21). On the other
hand, if β = 0, then α = ±√

a/2 and equation (23a) leads to

Er = +
√

2a (24)

for the negative sign in α.
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Similarly, if one rationalizes equation (17b) using ansatz (21), then one obtains the
relations

Ei = 2β (25a)

−2β2 + 2α2 − a = 0 (25b)

αβ = 0. (25c)

Here, while the last two equations turn out to be the same as equations (23b) and (23c), the
consistent values of α and β from these two sets of relations thus lead to Ei = 0 from (25a)
and the eigenfunction ψ(x) from (21) and (13) turns out to be [22]

ψ(x1, p2) = exp

[
−1

2

√
a

2

(
x2

1 − p2
2 + 2i x1p2

)]
. (26)

Next we provide results for some variants of the potential (20).

Case 1. When the parameter a (=ar + iai) in (20) becomes complex, then the real and imaginary
parts of V (x) can be written as

Vr(x1, p2) = ar
(
x2

1 − p2
2

) − 2aix1p2 Vi(x1, p2) = ai
(
x2

1 − p2
2

)
+ 2arx1p2. (27)

In this case, using ansatz (21), the rationalization of equations (17a) and (17b) yields the
following consistent values of α and β:

α = ± 1
2 [|a| + ar]

1/2 β = ± 1
2ai[|a| + ar]

−1/2

and correspondingly the real and imaginary parts of the eigenvalue as

Er = [ar + |a|]1/2 Ei = [−ar + |a|]1/2 (28)

where the negative sign in α and the positive sign in β are retained and |a| = (
a2

r + a2
i

)1/2
.

Further, the eigenfunction ψ(x1, p2) turns out to be

ψ(x1, p2) = exp

[
−1

4

(a + |a|)
(ar + |a|)1/2

(
x2

1 − p2
2 + 2i x1p2

)]
. (29)

Note that the imaginary part of E in this case turns out to be nonzero.

Case 2. Here, we consider the case of a shifted complex oscillator, namely,

V (x) = ax2 + bx (a, b complex). (30)

The ansatze for gr and gi used in this case and consistent with conditions (15) are

gr(x1, p2) = 1
2α11

(
x2

1 − p2
2

)
+ β11x1p2 + α01x1 − α10p2

gi(x1, p2) = 1
2β11

(−x2
1 + p2

2

)
+ α11x1p2 + α10x1 + α01p2

(31)

where the constants αij and βij are real. These forms of gr and gi, when used in (17a)
and (17b), after rationalization immediately yield a set of relations involving Er, Ei and the
parameters αij , βij . The same can be solved to give

α11 = ± 1
2 a+ β11 = ∓ 1

2 a−

α10 = ± 1

4|a| [bia+ − bra−] α01 = ± 1

4|a| [bia− + bra+].

where a+ = (ar + |a|)1/2, a− = (−ar + |a|)1/2 and |a| = (
a2

r + a2
i

)1/2
. Finally, the eigenvalue
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and eigenfunction for the potential (30) are obtained as

Er = ∓a+ +
ar

4|a|2
(
b2

i − b2
r

)
(32a)

Ei = ∓a− − 1

4|a|2
[
arbrbi + 2ai

(
b2

i − b2
r

)]
(32b)

ψ(x1, p2) = exp[gr(x1, p2) + igi(x1, p2)]

= exp

[
±1

2

(
Ax2 +

A∗b
|a| x

)]
(33)

where b = br + ibi, A = 1
2

[
(ar + |a|)1/2 + i(−ar + |a|)1/2] and x = x1 + ip2 from (1) is used.

3.1.2. Complex quartic potential. In this case we consider a quartic potential of very general
nature, namely,

V (x) = a + bx + cx2 + dx3 + ex4 (a, b, c, d, e complex) (34)

or, equivalently,

Vr(x1, p2) = ar + brx1 − bip2 + cr
(
x2

1 − p2
2

) − 2cix1p2 + dr
(
x3

1 − 3x1 p
2
2

)
− di

(
3x2

1p2 − p3
2

)
+ er

(
x4

1 − 6x2
1p

2
2 + p4

2

) − ei
(
4x3

1p2 − 4x1p
3
2

)
Vi(x1, p2) = ai + brp2 + bix1 + 2crx1p2 + ci

(
x2

1 − p2
2

)
+ dr

(
3x2

1p2 − p3
2

)
+ di

(
x3

1 − 3x1p
2
2

)
+ er

(
4x3

1p2 − 4x1p
3
2

)
+ ei

(
x4

1 − 6x2
1p

2
2 + p4

2

)
.

For the ansatz of the eigenfunction we now choose

gr(x1, p2) = β10 x1 + β01p2 + β20 x
2
1 + β02p

2
2 + β11 x1 p2 + β30 x

3
1 + β03p

3
2

+ β21 x
2
1p2 + β12 x1 p

2
2 (35a)

gi(x1, p2) = α10x1 + α01p2 + α20x
2
1 + α02 p

2
2 + α11x1p2 + α30x

3
1 + α03p

3
2

+α21x
2
1p2 + α12x1p

2
2 (35b)

in which the analyticity conditions (15) suggest that

3β30 = α21 = −β12 β20 = −2β02 = α11 β01 = −α10 β10 = α01

2α02 = −2α20 = β11 β12 = 3α03 = −α21 β21 = −3β03 = α12 = −3α30

and the same in turn lead equations (35) to the forms

gr(x1, p2) = α01x1 − α10p2 + 1
2α11x

2
1 − 1

2 α11p
2
2 + β11 x1p2 + 1

3 α21x
3
1

− 1
3 α12p

3
2 − α21x1p

2
2 + α12x

2
1p2 (36a)

gi(x1, p2) = α10x1 + α01p2 − 1
2β11x

2
1 + 1

2 β11p
2
2 + α11x1p2 − 1

3 α12x
3
1

− 1
3 α21p

3
2 + α12x1p

2
2 + α21x

2
1p2. (36b)

As before, the use of these forms of gr and gi in equations (17a) and (17b), after the
rationalization of the resultant expressions, yields the following set of non-repeating equations:

Er = ar − 2α11 + 2
(
α2

10 − α2
01

)
(37a)

α12α21 = − 1
4 ei (37b)



8750 R S Kaushal and Parthasarathi

α21β11 + α11α12 = − 1
4di (37c)

α21α10 − α12α01 + β11α11 = 1
4 ci (37d )

−α12 + α11α10 − β11α01 = 1
4 bi (37e)

α12β11 − α21α11 = − 1
4 dr (37f )

α21 + β11 α10 + α11α01 = 1
4 br (37g)(

α2
11 − β2

11

)
+ 2(α01α21 + α10α12) = 1

2 cr (37h)

α2
21 − α2

12 = 1
2 er (37i)

Ei = ai + 2β11 − 4α10α01. (37j)

Here, while equations (37d ) and (37h) will provide the constraining relations among the
potential parameters, the pairs of equations [(37b), (37i)], [(37c), (37f )] and [(37e), (37g)]
can be immediately solved for the six arbitrary constants in ansatz (36), namely, for
α12, α21, α11, β11, α10, α01. The results thus obtained are

α21 = ± 1
2 e+ α12 = ∓ 1

2 e− (38)

β11 = ± 1

4|e| [dr e− − di e+] α11 = ± 1

4|e| [dre+ + di e−] (39)

α10 = ± 1

2|d|2 [(bidr − brdi) e+ + (brdr + bidi) e− ∓ 4(drei − dier)] (40a)

α01 = ± 1

2|d|2 [(brdr + bidi) e+ + (brdi − bidr) e− ∓ 4(drer + diei)] (40b)

where e+ = (|e| + er)
1/2 and e− = (|e| − er)

1/2. The constraining relations obtained from
equations (37d ) and (37h) are given by

|d|2 [
ei

(
d2

r − d2
i

) − 2erdrdi
] − 8|e|2[er(bidr − brdi) + ei(brdr + bidi)∓ 2{e+(drei − dier)

+ e−(drer + diei)}] + 4|e|2|d|2ci = 0 (41)

|d|2 [
er

(
d2

r − d2
i

)
+ 2eidrdi

] ± 8|e|2[er(brdr + bidi) + ei(brdi − bidr)± 2{e−(drei − dier)

− e+(drer + diei)}] − 4|e|2|d|2cr = 0. (42)

Using the results of equations (38)–(40b), the real and imaginary parts of the eigenvalue can
be derived respectively from equations (37a) and (37j) in the following forms:

Er = ar ∓ 1

2|e|[dre+ + die−] +
1

|d|4 [er{bi(di + dr)− br(di − dr)}{bi(dr − di)− br(dr + di)}
+ 8{dr(er + ei)− di(er − ei)}{dr(ei − er)− di(ei + er)}
∓ 4e+{(drei − dier)(bidr − brdi)− (drer + diei)(brdr + bidi)}
∓ 4e−{(drei − dier)(brdr + bidi)− (drer + diei)(brdi − bidr)}
+ 2ei(bidr − brdi)(brdr + bidi)] (43)
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Ei = ai ± 1

2|e|[dre− − die+] − 1

|d|4
[
ei

{(
b2

r − b2
i

) (
d2

r − d2
i

)
+ 4brbidrdi

}
+ 2er(brdr + bidi)(bidr − brdi)∓ 4e+{(drei − dier)(brdr + bidi)

+ (drer + diei)(bidr − brdi)} ∓ 4e−{(drei − dier)(brdi − bidr)

+ (drer + diei)(brdr + bidi)} + 16(drer + diei)(drei − dier)] . (44)

Next we compute the eigenfunction using (36a) and (36b) and the values of αij and βij given
in equations (38)–(40). Thus, equation (13) yields the ground-state eigenfunction as

ψ(x1, p2) = exp

[ |e|
2|d|2 {{(brdr + bidi)e+ + (brdi − bidr)e− ∓ 4(drer + diei)} + i{(bidr − brdi)e+

+ (brdr + bidi)e− ∓ 4(drei − dier)}}x ± 1

8|e| {(dre+ + die−)

− i(dre− − die+)}x2 ± 1

6
(e+ + ie−)x3

]
. (45)

In what follows we present some special cases of the complex quartic potential (34).

Case 1. First we consider the case of a PJ -symmetric potential studied recently by several
authors [14, 24]. If we set ai = br = ci = dr = ei = 0 in equation (34), the resultant form

V (x) = ar + ibix + crx
2 + idix

3 + eix
4 (46)

is analogous to the one studied by Cannata et al [24], for ar = 0. In this case, equations (37b)–
(37i) reduce to somewhat simpler forms as follows in the same ordering:

α12α21 = 0 (47b)

α21β11 + α11α12 = − 1
4 di (47c)

α21α10 − α12α01 + β11α11 = 0 (47d )

−α12 + α11α10 − β11α01 = 1
4 bi (47e)

α12β11 − α21α11 = 0 (47f )

α21 + β11α10 + α11α01 = 0 (47g)

α2
11 − β2

11 + 2(α01α21 + α10α12) = 1
2 cr (47h)

α2
21 − α2

12 = 1
2 er. (47i)

With regard to the solution of these equations for the ansatz parameters
α12, α21, α11, β11, α01, α10, note from equation (47b) that either α12 = 0 orα21 = 0 or both are
zero. For the cases when either α12 = 0 or both α12 and α21 are zero, it can be shown that
equations (47b)–(47i) yield α12 = α21 = β11 = α11 = α10 = α01 = 0. On the other hand,
if α21 = 0 and α12 �= 0, equations (47b)–(47i) (except for equation (47e)) can be solved for
some negative value of er (say er = −ēr) in the potential (46). The results obtained are

α21 = β11 = α01 = 0 α12 = ±
√
ēr

2
α11 = ∓ di

2
√

2ēr
α10 = ±

(
4crēr − d2

i

)
8ēr

√
2ēr

(48)

where ēr is real positive. Equation (47e) yields a constraining relation on the potential
parameters, namely,

8(ēr)
2bi = ∓16(ēr)

2
√

2ēr − 4ēr crdi + d3
i . (49)
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Note in this case that while the imaginary partEi from equation (37j) turns out to be zero,
the real part of the energy eigenvalue from (37a) is given by

Er = ar ± di√
2ēr

+
1

64(ēr)3

(
4ērcr − d2

i

)
. (50)

Further, gr and gi from equations (36a) and (36b) also reduce to somewhat simpler forms and
finally these results lead the eigenfunction (13) to the form

ψ(x1, p2) = exp
[

1
2 α11x

2 + i
(
α10x − 1

3 α12x
3)] (51)

where α11, α12, α10 are given in (48) and x in equation (1). Thus, for the potential (46) with
the constraining relation (49) and er negative, the ASE (6) admits the solution (51) with the
real eigenvalue given by (50).

Recall that the prescription followed here for the PJ -symmetry is of a more general
nature than the conventional [6–8, 10–15] one (cf section 1). In our case, this, while affecting
the kinetic term in the Hamiltonian, also demands the analyticity of the eigenfunctions ψ(x)
through the Cauchy–Riemann conditions (11). In these circumstances, any comparison of
the present results with those obtained using the conventional PJ -symmetry does not make
sense, yet a linkage between the two approaches can be sought, particularly for the real x and
p, i.e. by setting p2 = x2 = 0 in (1) and by obviating the concept of analyticity of ψ(x).

Within the framework of conventional PJ -symmetry Cannata et al [24] for the potential
(46) (with x real and ar = 0) arrive only at a three-term constraining relation on the potential
parameters whereas in our case it turns out to be a four-term relation (cf equation (49)).
Although in our approach the potential (46) appears as a special case of the more general
structure (34), the solution corresponding to a real (cf equation (50)) spectrum is obtained
only for negative real values of er in (46), unlike the one discussed by Cannata et al for
er = ±1. Our conclusions, as enumerated above, however, agree with those arrived at by
other authors [25, 26] for the conventional PJ -symmetry case.

Case 2. Next we analyse the special case of an even power quartic potential, namely,

V (x) = a + cx2 + ex4 (a, c, e complex) (52)

where b = d = 0 is set in (34). In this case, the non-repeating equations similar to (37) now
turn out to be

Er = ar + 2
(
α2

10 − α2
01

)
Ei = ai − 4α10α01 −4α21α12 = ei

α21α10 − α12α01 = 1
4 ci α21α01 + α12α10 = 1

4 cr α2
21 − α2

12 = 1
2 er

}
(53)

and from these equations the ansatz parameters α21, α12, α10, α01 can be obtained as before to
give

α21 = ± 1
2 e+ α12 = ∓ 1

2 e−

α10 = ± 1

2|e|(cie+ − cre−) α01 = ± 1

2|e| (cre+ + cie−)


 (54)

and finally, the energy eigenvalues and the eigenfunction are given by

Er = ar +
1

|e|2
[|e| (c2

i + c2
r

) − 2eicicr
]

(55a)

Ei = ai − 1

|e|2
[
ei

(
c2

i − c2
r

)
+ 2ercicr

]
(55b)

ψ(x) = exp

[
±1

6
(e+ + ie−)x3 ± c

2|e|(e+ − ie−)x
]
. (56)



Quantum mechanics of complex Hamiltonian systems in one dimension 8753

For the case when ai = ci = ei = 0 (PJ -symmetric version) in (52), namely,

V (x) = ar + crx
2 + erx

4 (57)

the eigenvalues (55) and the eigenfunction (56) reduce to simple forms as

Er = ar − c2
r

4er
Ei = 0 (58)

ψ(x) = exp

[
±1

3

(√
er

2
x3 +

3

2

cr√
2er

x

)]
. (59)

3.2. Singular potentials

3.2.1. Complex inverse harmonic potential. Consider the case of a simple singular potential,

V (x) = a

x2
(a complex). (60)

Note that the potential (60) (of course with real a) is basically a rational solution [27] of the
KdV equation (2) in the limit when U,U ′, U ′′ → 0 as |x| → ∞ and the same is used here
as a potential function in the spirit of equation (3). An ansatz for gr and gi which conform to
conditions (15) is chosen as

gr(x1, p2) = β10 x1 − α10p2 + β1 tan−1(x1/p2)− 1
2 α1 ln

(
x2

1 + p2
2

)
(61a)

gi(x1, p2) = α10x1 + β10 p2 + α1 tan−1(x1/p2) + 1
2 β1 ln

(
x2

1 + p2
2

)
. (61b)

The use of these results in equations (17a) and (17b) and the rationalization of the resultant
expressions yields the following set of non-repeating equations:

β10 α10 = 0 (62a)

α10α1 − β10 β1 = 0 (62b)

ai + 4β1 α1 + 2β1 = 0 (62c)

β10 α1 + α10β1 = 0 (62d )

−2ar + 4α1 − 4β2
1 + 4α2

1 = 0 (62e)

with Ei = Er = 0. Clearly, for the unique solution of these equations for the ansatz
parameters β10, α10, α1 andβ1 one should consider the possibilities (i) β10 = 0, α10 �= 0,
(ii) α10 = 0, β10 �= 0 and (iii) β10 = α10 = 0. It can be seen that in the first two
cases a consistent solution does not exist for the desired ar and ai. However, for case (iii)
equations (62a), (62b) and (62d ) are trivially satisfied, while equations (62c) and (62e) can
be solved in principle for β1 and α1. But the value of β1 from (62c) as β1 = −ai/(4α1 + 2)
when used in (62e) yields a complicated quartic equation in α1, namely,

4α2
1(2α1 + 1)2 + 4α1(2α1 + 1)2 − 2ar(2α1 + 1)2 − a2

i = 0 (63)

of which the solution is not very simple. Therefore, for simplicity we set α1 = β1 in
equations (62c) and (62e) leading to β1 = ar/2 and a restriction on the potential parameter ai

as ai <
1
4 . For this case the zero energy solution of ASE (6) for the complex singular potential

(60) can be expressed as

ψ(x1, p2) = (
x2

1 + p2
2

)(i−1)ar/4 exp
[

1
2 (1 + i)ar tan−1(x1/p2)

]
. (64)
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3.2.2. Complex harmonic plus inverse harmonic potential. Here, we consider the potential

V (x) = ax2 +
b

x2
(a, b complex). (65)

In this case, the ansatz for gr and gi which conform to conditions (15) turns out to be

gr(x1, p2) = 1
2 α11

(
x2

1 − p2
2

)
+ β11x1p2 + β1 tan−1(x1/p2)− 1

2 α1 ln
(
x2

1 + p2
2

)
(66a)

gi(x1, p2) = − 1
2 β11

(
x2

1 − p2
2

)
+ α11x1p2 + α1 tan−1(x1/p2) + 1

2 β1 ln
(
x2

1 + p2
2

)
. (66b)

After using the derivatives of these forms of gr and gi in equations (17a) and (17b) and
rationalizing the resultant expressions,one obtains the following set of non-repeating equations
as before, namely,

Er = −2α11 − 4(β11β1 − α11α1) (67a)

2β1 + 4α1β1 = −bi (67b)

2α1 − 2β2
1 + 2α2

1 = br (67c)

2
(
α2

11 − β2
11

) = ar (67d )

4α11β11 = −ai (67e)

Ei = 2β11 − 4(β11α1 + α11β1). (67f )

Equations (67d ) and (67e) can be solved in the same way as equations (37b) and (37i) leading
to

α11 = ± 1
2 a+ β11 = ∓ 1

2 a−

where a+ = (|a| +ar)
1/2, a− = (|a| −ar)

1/2. With regard to the solution of equations (67b)
and (67c), we use the prescription followed earlier for the solutions of equations (62c) and
(62e), namely, the solution of these equations as such leads to a quartic equation of the type (63)
inα1, the solution of which is again a difficult task. Therefore, we assumeα1 = β1, as before, in
equation (66). For this case, while equation (67c) givesα1 = 1

2 br, the quadratic equation (67b)
leads to α1 = 1

4

[− 1 ±√
1 − 4bi

]
. Further, it is noted that the second value of α1 makes sense

only for bi � 1
4 and the two values of α1 combined together lead to the constraint on the real

and imaginary parts of the parameter b, namely,

b2
r + br + bi = 0 (68)

for the existence of the solution of ASE (6) for the potential (65). For this case the energy
eigenvalues from (67a) and (67f ) and the eigenfunction from (13) are given by

Er = ∓a+ ± br(a+ + a−) (69a)

Ei = ∓a− ± br(a+ − a−) (69b)

ψ(x1, p2) = (
x2

1 + p2
2

)(i−1)br/4 exp
[± 1

4 (a+ − ia−)x2 + 1
2br(1 + i) tan−1(x1/p2)

]
. (70)

It is worth comparing these results with those in equations (28), (29) and (64). Note that while
the potential (60) admits the zero energy solutions, nonzero energy solutions are obtained for
the potential (65), of course with the constraint (68) on the potential parameters. Further, from
(69b) it can be noted that Ei = 0 for br = ±[(|a| − ar)/2(|a| − ai)]1/2.
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Note that in the study of the quantum mechanics of the real version of the potential (65)
in one dimension the parameter b is found [28] to take only some discrete values, namely,
b = 1

2m(m − 1), where m is a positive integer, for the existence of a normalizable solution.
Here, however, the normalization of ψ(x1, p2) involves the integration over the complex x
plane and hence will make the situation different. We shall return to some of these details
later.

3.3. Exponential potentials

In this category we consider the solution of ASE (6) for the complex Morse potential

V (x) = V0[e−2ax − 2e−ax] (V0, a complex) (71)

or, equivalently,

Vr(x1, p2) = V0r[e−2X cos 2Y − 2e−X cosY ] + V0i[e−2X sin 2Y − 2e−X sin Y ]

Vi(x1, p2) = V0i[e−2X cos 2Y − 2e−X cosY ] − V0r[e−2X sin 2Y − 2e−X sin Y ]
(71′)

where X = arx1 − aip2; Y = aix1 + arp2;V0 = V0r + iV0i and a = ar + iai are used. For the
ansatz of the eigenfunction, we take

gr(x1, p2) = β1x1 − α1p2 + β3 e−X cosY

gi(x1, p2) = α1x1 + β1p2 − β3 e−X sin Y

}
(72)

which again conform to conditions (15). Using these forms of Vr, Vi, gr and gi in
equations (17a) and (17b), we rationalize the resultant expressions and obtain the following
set of non-repeating equations as before:

Er = 2
(
α2

1 − β2
1

)
(73a)

−2V0i − 4β3arai + 4β3(aiβ1 + arα1) = 0 (73b)

2V0r − 2β3
(
a2

i − a2
r

) − 4β3(arβ1 − aiα1) = 0 (73c)

V0i − 4aiar β
2
3 = 0 (73d )

−V0r − 2β2
3

(
a2

i − a2
r

) = 0 (73e)

Ei = −4β1α1. (73f )

While equation (73d ) providesβ3 = ±(V0i/4aiar)
1/2, equation (73e) reduces to a constraining

relation among the potential parameters, namely,

V0i
(
a2

i − a2
r

)
+ 2V0raiar = 0. (74)

Alternatively, one can also use (73e) to determine β3 as β3 = ±[
V0r/2

(
a2

r −a2
i

)]1/2
and (73d )

to give the same constraining relation as (74). Further, equations (73b) and (73c) can be solved
for β i and αi to give

β1 = 1

2
ar +

1

2β3 |a|2 (V0iai + V0rar)

α1 = 1

2
ai +

1

2β3 |a|2 (V0iar − V0rai)


 . (75)

Using these results for β1 and α1 in (73a), (73f ) and (72), one obtains the expressions for the
energy eigenvalues as

Er = −1

2

(
a2

r − a2
i

) − V0r

β3
− 1

2β2
3 |a|4

{(
V 2

0r − V0i
) (
a2

r − a2
i

)
+ 4V0iV0raiar

}
(76a)
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Ei = −aiar − 2V0i

β3
+

1

β2
3 |a|4

{
V0iV0r

(
a2

i − a2
r

)
+

(
V 2

0r − V 2
0i

)
aiar

}
(76b)

and for the eigenfunction as

ψ(x) = exp

[
1

2

(
a +

V0

β3 a

)
x + β3 exp(−ax)

]
(77)

where β3 = ±[
V0r/2

(
a2

r − a2
i

)]1/2
. Note that for this choice of β3 and for ai = V0i = 0,

expressions (76) and (77) reduce to those obtained for the real V0, a case in (71) (cf [22]).
Further, from (76b) a condition among the potential parameters can be derived in this case for
the vanishing of Ei.

It may be mentioned that another class of exponential potentials manifesting through the
hyperbolic functions has been studied recently by several authors [12, 29]. These potentials are
the PJ -symmetric ones by construction. While, in general, they admit complex eigenvalues
(cf section 1), they are shown to admit the real ones for suitable parametric domains of the
potential under study. In this connection the forms of V (x) studied are

V (x) = −(-z cosh 2x − iM)2 (78)

by Khare and Mandal [12] and

V (x) = −(V1 sech x + iV2 tanh x) sech x V1 > 0 (79)

by Ahmed [29]. For example, for the potential (79) the discrete eigenvalues are found to be
complex-conjugate pairs when |V2| > V1 + 1

4 , and real otherwise. Similarly, for the potential
(78) the eigenvalues are real for the odd values of the integer M (M = 1, 3) and they are
complex-conjugate pairs for the even M (M = 0, 2). We restrict ourselves from going into
further details here.

4. Excited states and orthonormality of eigenfunctions

In this section before discussing the problem of orthonormality of the eigenfunctions
corresponding to non-Hermitian Hamiltonians, we demonstrate the viability of the method to
study the excited states. In this connection, while we postpone details for a future work [30],
the viability of the general prescription of section 2 for the case of excited states is however
demonstrated here by way of modifying ansatz (13) to the form

ψ(x) = f (x) exp(g(x)) (80)

where f (x) and g(x) are polynomial functions of a complex variable with f (x) =
fr(x1, p2) + ifi(x1, p2) and g(x) = gr(x1, p2) + igi(x1, p2). This form of ψ(x) will replace
equations (14) by

ψr(x1, p2) = egr(fr cos gi − fi sin gi)

ψi(x1, p2) = egr(fi cos gi + fr sin gi)

}
. (81)

Now, from equations (81) one immediately obtains the second derivatives as

ψr,x1x1 = egr(B cos gi − A sin gi) ψi,x1x1 = egr(A cosgi + B sin gi) (82)

where

A = fi,x1x1 − fi
(
gi,x1

)2
+ fi

(
gr,x1

)2
+ 2fr,x1gi,x1 + 2fi,x1gr,x1

+ 2frgr,x1gi,x1 + frgi,x1x1 + figr,x1x1

B = fr,x1x1 − fr
(
gi,x1

)2
+ fr

(
gr,x1

)2 − 2fi,x1gi,x1 + 2fr,x1gr,x1

− 2figr,x1gi,x1 − figi,x1x1 + frgr,x1x1 .
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The use of these results in (12a′) and (12b′) yields a pair of coupled PDEs, namely,

Er = Vr − 2

f 2
r + f 2

i

(frB + fiA) Ei = Vi − 2

f 2
r + f 2

i

(frA− fiB) (83)

which in turn, after substituting the expressions for A and B, give rise to

Er = Vr − 2
[
gr,x1x1 − (

gi,x1

)2
+

(
gr,x1

)2
]

− 2

f 2
r + f 2

i

[
fr

(
fr,x1x1 + 2fr,x1gr,x1 − 2fi,x1gi,x1

)
+ fi

(
fi,x1x1 + 2fr,x1fi,x1 + 2fi,x1gr,x1

)]
(84a)

Ei = Vi − 2
[
gi,x1x1 + 2gr,x1gi,x1

] − 2

f 2
r + f 2

i

[
fr

(
fi,x1x1 + 2fr,x1gi,x1 + 2fi,x1gr,x1

)
+ fi

(−fr,x1x1 + 2fi,x1gi,x1 − 2fr,x1gr,x1

)]
. (84b)

These are the equations to be rationalized to obtain the excited states for a given potential in
the same way as we have done in the previous sections with equations (17a) and (17b). Note
that in equations (84a) and (84b), while other terms conform to the results for the ground
state (cf equations (17a) and (17b)), the last term in these equations is the contribution of the
additional factor f (x) in ansatz (80). It can be immediately seen that this contribution vanishes
for the case when f (x) = constant, i.e. for the ground state. Some explicit applications of
equations (84a) and (84b) for a complex sextic potential are demonstrated elsewhere [30].

Next we comment here on the question of normalization of the eigenfunctions for the non-
Hermitian Hamiltonian operators. For the (conventional) PJ -symmetric potentials, however,
the issue of normalization of the eigenstates has been addressed by Bender and Turbiner [6],
Bender and Boettcher [7], Bender et al [31] and more recently by Ahmed [29] and Bagchi
et al [32]. In the approach of Bender and his co-workers [6, 7, 25, 31] the eigenstates for the
(conventional) PJ -symmetric Hamiltonians which are complex, well behaved in (−∞, ∞)
and asymptotically vanishing on the real line, are normalizable. As a matter of fact, in this case
the real x is replaced by a contour in the complex plane along which the Schrödinger differential
equation holds and subsequently the imposed boundary conditions lead to quantization at the
end points of the contour via a WKB-type approach. Further, for the regions in the cut complex
x-plane (where ψ(x) vanishes asymptotically as |x| −→ ∞) Bender et al have used [33] the
concept of wedges bounded by Stokes lines in their example-based discussions.

Now the question arises: what prescription in general one should use for the normalization
and orthogonality of the eigenstates corresponding to a non-Hermitian operator? In this
connection the prescription of Ahmed [29] appears more appealing. Ahmed has studied
the discrete spectrum for the PJ -symmetric potential (79) and the orthogonality of states
ψ1(x), ψ2(x) corresponding to eigenvalues E1 and E2 is defined by [29]∫ ∞

−∞
ψ1(x)ψ2(x) dx = 0 (85)

for E1 �= E2. Note the absence of the complex conjugation in (85). Further, in view of the
PJ -operations involved in the method a more general condition suggested by Ahmed is∫ ∞

−∞
ψ1

PJ (x)ψ2(x) dx = 0 (86)

for E∗
1 �= E2, i.e. for the case of broken PJ -symmetry. Here ψPJ (x) = ψ∗(−x). For the

potential (79) both the above prescriptions are found to hold in general within the framework
of the underlying constraining relations among the potential parameters. A basis to these
conditions of orthogonality is also sought by Bagchi et al [32] in the equation of continuity.
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In the present work, although we have restricted ourselves to the ground-state solution
of ASE (6), yet their normalization and, subsequently for the case of excited state solutions,
the study of orthogonality of the complex solutions is desirable. Note that our computed
eigenfunctions for various complex potentials (cf equations (26), (29), (33), (45), (51),
(56), (64), (70), (77)) basically are the complex functions of the complex variable x (cf
equation (1)). Therefore, the normalization constant N in ψ(x) = N exp(g(x)) (or for the
excited states in ψ(x) = Nf (x) exp(g(x))), in general, need not be a real number and the
same should be determined from the contour integral∫

ψ2(x) dx = 1 or N =
(∫

e2g(x) dx

)−1/2

. (87)

Unfortunately, the derived eigenfunctions in the present method do not exhibit any pole by
construction, except for the case of singular potentials (cf equations (64) and (70) in which
for certain values of ar or br, ψ(x) can have poles). Thus, according to the Cauchy residue
theorem the integral in (87) vanishes, leaving behind the question of normalization of ψ(x).
On the other hand, if we proceed via a two-real-dimension analogue [3, 4] of the one complex
dimension in view of definition (1), the integral (87) can be recast in the form∫ ∞

−∞

∫ ∞

−∞
ψ2(x1, p2) dx1 dp2 = 1

or

N−2 =
∫ ∞

−∞

∫ ∞

−∞
exp[2{gr(x1, p2) + igi(x1, p2)}] dx1 dp2 (88)

and the complex N can be determined. In the same vein, in the present approach, one
can introduce the orthogonality of the eigenfunctions ψ1(x) and ψ2(x) corresponding to the
complex eigenenergies E1 and E2 as∫ ∞

−∞

∫ ∞

−∞
ψ1(x1, p2)ψ2(x1, p2) dx1 dp2 = 0 (89)

for |E1| �= |E2|. This is a rather strong condition for the orthogonality of ψ1 and ψ2.
However, other weak conditions for the validity of (89) could be for (i)E1 �= E2, (ii)E∗

1 �= E2

or E1 �= E∗
2 , depending upon the nature of the potential.

In conventional (Hermitian) quantum mechanics (CQM) the use of boundary conditions
and the normalization of the eigenfunction have some physical bearing in the sense that these
features of the wavefunction are meant to fix the geometry of the quantum system. In particular,
the boundary conditions will help in eliminating one of the linearly independent solutions out
of the general solution (which is a linear combination of two linearly independent solutions)
of the second-order Schrödinger wave equation, the normalization of the eigenfunction, on the
other hand, ensures the probability of finding the particle within those boundaries. Further,
with regard to the mathematical content of the eigenfunction it is considered as a complex
function of the real variables and the complexity of the same arises mainly from the angular
part of the total wavefunction. In the present analogous (non-Hermitian) quantum mechanics
(AQM) described by ASE (6) the situation is however different. In some sense AQM is
equivalent [4] to studying CQM in two real dimensions x1, p2. Although the role of these two
dimensions manifests clearly in the eigenfunction, however, it reduces to that of one dimension
for its derivatives in view of condition (15). That is why equations (17a) and (17b), after their
rationalization, yield identical equations for a given potential V (x).

With regard to the boundary conditions on ψ(x) in the present approach, it is interesting
to note that all the computed eigenfunctions for the bound states (i.e. with the negative sign
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in the exponent), namely, (26), (29), (33), (45), (51), (56) and (70), obey the condition
lim|x|−→∞ ψ(x) = 0 even for x defined in (1). This is in conformity with what has been
emphasized by Bender et al [25] for the asymptotic solutions. It can be seen that with some
restrictions on the potential parameters the eigenfunction (77) corresponding to potential (71)
also fulfils this requirement. However, the pure singular potential (60) exhibits only the
scattering state solutions (64).

5. Summary and discussion

With a view to exploring new vistas with regard to the nature of complex spectra and associated
eigenfunctions for the non-Hermitian Hamiltonian operators, the quasi-exact solutions of ASE
(6) are investigated for a variety of complex potential functions. In particular, the ground-
state solutions of equation (6) are obtained for power, singular and exponential potentials.
Besides the complexity of the phase space produced by (1), the complexity of the parameters
of potentialV (x) is also considered. It is this latter consideration which is found to suggest the
nonvanishing of the imaginary part of the eigenspectrum in most cases. While several variants
of the complex oscillator potential (including the shifted oscillator) and complex quartic
potential (including the even power and PJ -symmetric ones) are investigated, a complex
‘pure’ singular potential (cf equation (60)) is found to admit only zero energy solutions as is the
case with real singular potentials. Introduction of a complex harmonic piece (cf equation (65))
in (60), however, leads to nonzero energy solutions. It may be emphasized that the solutions
of ASE (6) in some of the above-mentioned cases are obtained only in the presence of
certain constraining relation(s) among the potential parameters, namely, equations (41) and
(42) for the general quartic case (34), equation (49) for the PJ -symmetric quartic case (46),
and equation (68) for the harmonic plus inverse harmonic potential (65). The solution for the
complex Morse potential (71) is obtained when the real and imaginary parts of the parameters
V0 and a in (71) satisfy the constraining relation (74).

On the basis of the above studies and those carried out in [22] the following general
remarks are in order:

(1) In the present framework of the extended complex phase space produced by (1) the
imaginary part of the eigenvalue always vanishes for the solvable cases of ASE (6) as
long as all the parameters of the complex potentialV (x) are real. In this respect the results
obtained in the present approach coincide with those derived by demanding the invariance
of the given Hamiltonian under the PJ -operation. The present approach, in this case,
provides results without any constraint on the potential parameters, the conventional
PJ -symmetry approach (used extensively [6–15] in recent years), however, yields real
eigenvalues only in a limited parametric domain.

(2) In spite of the fact that a physical basis for some of the steps in the present approach
(such as the orthogonality and the completeness of states) has yet to be explored, it is
quite general and viable in the sense that (i) the analyticity property of the eigenfunction
greatly simplifies the underlying computation in determining the nature of the spectra, (ii)
a simple extension of the parameters from the real to the complex domain immediately
yields the complex spectrum, at least for solvable cases, and (iii) for a solvable case, the
constraining relations (if they are there at all) immediately help in identifying the usable
domain for the parameters in the potential function V (x) which in turn would suggest the
desired features in the spectrum.

(3) ThePJ -symmetric potentials studied extensively [6–15] deal mainly with the complexity
arising from the potential parameters in their restricted domains for a real eigenvalue
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spectra. In this respect this approach could also be considered as a special case of the
present general method (cf section 3.1.2, case 1). To demonstrate this fact note that for
real x, when the solution (51) is substituted in equations (6), the rationalization of the
resultant expression immediately yields the same results as obtained by Bender et al [25]
for J = 1 in their PJ -symmetric potential. On the other hand, the real eigenvalue spectra
and the constraining relation obtained for the potential (46) in the present approach (cf
equations (49) and (50)) have a basis in the analyticity property of ψ(x) and the complex
nature of the underlying phase space.

The project initiated in this paper is not yet over. From the point of view of physical
applications of the results derived here, several aspects of the present method of handling the
non-Hermitian operators in quantum mechanics need to be explored further, particularly in the
light of the newly introduced [34] concept of pseudo-Hermiticity for a complex Hamiltonian.
Such studies are in progress.
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